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ABSTRACT

Observational evidence is provided for the occurrence of anomalous winds which represent an anticyclonie rotation

in space, and a mechanism for their development is suggested.

The unstable nature of these winds and the role they

play in the development of certain types of atmospheric disturbances is then discussed, and it is suggested that anoma-
lous winds provide the dynamic mechanism for triggering hurricane formation and for the observed deepening of

troughs downstream from intense pressure ridges.

Finally it is noted that although the observational evidence pre-

sented is for the oceurrence of anomalous winds over small regions of the atmosphere, their development is dependent
on large-scale processes and their effect extends beyvond the area where they oceur.

1. INTRODUCTION

The gradient wind equation is a quadratic and thus has
two solutions. One of these solutions, appropriate to anti-
cyclonic flow, represents a clockwise rotation in space and
is, therefore, in the opposite sense to the earth’s rotation.
Meteorologists have traditionally given little attention to
this solution and some even consider it as an algebraic
accident with little or no physical significance. Although
there are cogent reasons to believe that winds correspond-
ing to this solution do not occur on a large scale, the con-
tention, ¢pso facto, that this solution is of no importance is
not justified and has probably had far-reaching effects in
eliminating from consideration some promising avenues of
research in connection with the development of atmos-
pheric disturbances.

In recent years there has been a slow trickle of evidence,
both theoretical and observational, that these so called
“anomalous winds”” occur more frequently than had been
suspected. But, by and large, meteorologists are still not
sufficiently aware of these winds nor of their importance.
The purpose of the present study is not only to provide
further evidence of the occurrence of anomalous winds,
but also to demonstrate that these winds are germane to
the development of dynamic instability in curved airflow
and, as such, are relevant to the development of certain
types of atmospheric circulations.

2. ELEMENTARY DYNAMICS OF ANTICYCLONIC
MOTION

To introduce the problem, we shall review some elemen-
tary aspects of the dynamics of anticyclonic motion.
The gradient wind equation may be written:

K,\V*+fV=b, 1)

were K,=1/R ,=trajectory curvature considered positive
for cyclonic motion; V=magnitude of the horizontal wind;
f=Coriolis parameter; and b,=—adp/On=pressure gradi-
ent force. From equation (1)

1:t\/ Jr4Kb

Since V must always be positive, the solution with the
plus sign has a physical meaning only when K, is negative;
i.e., when the flow is anticyclonic.

V=— 2K, (2)

We shall confine our discussion to anticyclonic flow and

put K;=— The two solutions of equation (2) reduce
to:
4K’
and
4K’
Vimsge (1+\/ @
From the above equations it can be seen that
i
Vl = 2K/ (5)
and
Vo> 2K; (6)
We differentiate equation (1) with respect to V'
db,
Ooe—2VE 41 @

and note that db,/dV can be zero; i.e., b, has an extreme
value if K, is negative. This value is reached when
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Fieure 1.—Variation of gradient anticyclonic wind speed with
pressure gradient.
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V= 2K, 2K (8)
and represents the maximum value
P _F

b= TIR TR, )

which the pressure gradient can attain in anticyclonic
motion.

Figure 1 shows the variation of V with b, in accordance
with equation (1). It is seen that the two solutions meet
at V=7/2K,” when the pressure gradient is at its maximum
value 2/4K. TFrom this point, where the wind is equal
to twice the geostrophic wind V,, the two solut’ ons V; and
Vs, corresponding respectively to equations (3) and (4)
branch out. V; decreases with decreasing pressure gradi-
ent and vanishes when the latter becomes zero. This
corresponds to the conditions normally observed in the
atmosphere. We shall therefore term V; the normal solu-
tion of the anticyclonic gradient wind equation. V,, on
the other hand, increases with decreasing pressure gradient
and at b,=0 reaches the value V,=f/K,” and the flow
becomes inertial. - Following Gustafson [7], we shall term
V; the anomalous solution.

Figure 2 shows the variation of the gradient anticy-
clonic wind with trajectory curvature, assuming a con-
stant pressure gradient. It is seen that, in contrast with
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Ficure 2.—Variation of gradient anticyclonic wind speed with
trajectory curvature. V, denotes the geostrophic wind.

normal anticyclonic winds which increase with increasing
curvature, anomalous winds show a sharp decrease with
increasing curvature. y

As mentioned in the introduction, meteorologists in
general have attributed little importance to the anomalous
solution on the basis that it is seldom, il ever, realized in
the atmosphere [5] or that its occurrence is limited to small-
scale mechanically produced vortices, or to atmospheric
eddies produced by friction [11]. The standard arguments
in support of this view are usually some variation of the
following:

a. The anomalous solution requires a clockwise rotation
in space and, therefore, in the opposite sense to that of the
earth. There is no known mechanism capable of pro-
ducing such a motion on a large scale.

b. By expanding the quantity under the radical sign
in equations (3) and (4), we obtain



484 MONTHLY WEATHER REVIEW NOVEMEBER 1961
’ T T I T T T Y T T T T ! T A T T T T Y T Y ;

5 HURRICANE DAISY -~ - 1 ARCRAFT  TRACK

: STREAMLINES & {SOTACHS (KT:)

160k OF ACTUAL WIND . B8V S0 /5 7 7

4oL 35,000FT. AUG 25,1958

120}

o g E NS LSS S NS 10 :

80}

(NAUTICAL  MILES)
3

RADIAL . DISTANCE

i
-

o

aaaaaa

........
'

.......
s

..
N

e
EERR,

S : ‘ R
340 20 30 B0 60 WO B0 K00 80 60 30 20

9]
RADIAL DISTANCE

i H i i I A 1)
20 40 60 80 100 120
{NAUTICAL MILES)}

Fraure 3.-——Wind field at 35,000 ft. (pressure altitude, U.S. Standard), around hurricane Daisy on August 25, 1958.
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V. is thus continuous when the curvature decreases in-
definitely and the isobars are nearly straight. On the
other hand, for indefinitely small curvature, V, becomes
infinitely large and would require an infinite supply of
energy, which is not available in the atmosphere [5].

3. EVIDENCE OF THE OCCURRENCE OF ANOMALOUS
WINDS

In contrast with the above arguments, there are others
which indicate that both solutions for gradient anticy-
clonic flow are satisfied. Godson [6], for instance, con-
siders a moving anticyclonic streamline system and ex-
presses the gradient wind relation as follows:

R, +Ccosy R4 C cos¥\? 172
y=Trts :t[( X ) -—fREVg:l

where R.=radius of contour curvature, C=speed of
streamline system, y=angle from the direction of motion
of the streamline system to the wind direction. Godson
argues that if ('cos <0, it is possible to obtain two values
of V both of which are greater than 2V, and thus
correspond to the classically rejected root. On the other

(12)
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Ficure 4.—Wind field at 35,000 ft. around hurricane Daisy on August 26, 1958.

hand if C cos ¢ >0, it is possible to obtain values of V both
of which are less than 2V, and thus correspcnd to the
classically accepted root. He concludes that both roots of
the gradient wind equation for anticyclonic flow occur in
the atmosphere.

On the observational side, indirect evidence that anom-
alous winds occur was provided by Gustafson [7] who
compared observed winds with geostrophic winds in a
moving pressure ridge at 700 mb. and applied the following
criteria which follow directly from equations (5) and (6)
above:

V,1L<2V, cos 8
and (13)

Vy>2V, cos 8

where 8 1s the deviation in direction between the observed
and geostrophic winds, measured clockwise from due east.
In a 3-day sequence Gustafson found consistent positive
deviation from geostrophic directions to the west of the
moving ridge and similarly consistent negative deviations
to the east of it.

More recently, Angell [3] has furnished more direct
evidence of the occurrence of anomalous flow from an
evaluation of transosonde flights at 300 mb. In one
instance the transosonde performed a full clockwise loop
in 36 hours with an estimated angular velocity of —0.48 X
107* sec.”™ This represents anomalous flow since the
angular velocity of the earth at that locality (30°N.) is
0.36 X 107* sec.”! More significantly, perhaps, the
transosonde trajectories suggested the occasional occur-
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Ficure 5.—Wind field at 34,200 ft. around hurricane Daisy on August 27, 1958.

rence of anomalous flow on the ridges of long waves in the
westerlies. The significance of this fact will be discussed
in section 7, below.

Since the summer of 1956, the National Hurricane
Research Project (NHRP), U.S. Weather Bureau, has
been operating three specially instrumented airplanes to
make detailed observations in and near hurricane cores.
A discussion of the characteristics and properties of the
instrumentation was given by Hilleary and Christensen
[{10] and will not be repeated here. Among the most
successful missions flown were those in connection with
hurricane Daisy which developed near the Bahamas on
August 24, 1958. This hurricane had a well-defined and
concentrated wind circulation and presented a clear-cut
radar configuration which greatly facilitated the location
of the storm core. Flight missions were made at dif-
ferent levels on four days from August 25 to August 28,
1958. Among the elements measured were the wind, the
temperature, and the radio and pressure altitudes. Quasi-
instantaneous values of these parameters were punched on

cards at specified intervals ranging from 10 seconds away
from the core, to 2 seconds in the core. The punched
cards were then evaluated by machine processing and the
various parameters were plotted on a coordinate system
fixed with respect to the storm center.

Figures 3, 4, and 5 show the wind field obtained by
analyzing the observations made in the upper troposphere
on August 25, 26, and 27. In making these analyses, it
was necessary to regard as quasi-simultaneous, observa-
tions which, in fact, were made over a period of several
hours. It is, however, believed that this shortcoming
does not invalidate the results obtained.

From the wind fields thus obtained, values of the speed
and direction were plotted on a rectangular grid of points
20 n.mi. apart. From these, computations of the quan-
tity 2VK, were made on the IBM 650 computer. The
curvature of the trajectory K, was computed from the
following relations:

If v and v are the westerly and southerly components
of the wind, and if we define
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Ficure 6.—Field of the quantity 2V/R, at 35,000 feet (pressure
altitude, U.S. Standard), around hurricane Daisy on August 25,
1958. Areas with anomalous winds are shaded.

gb:tan’l% (14)
then
gy (1010
K= £~COS¢ vids v ds
- L (ao )
=vi\"ds s
1 dv  du -
:T/—3 ’LI;EZ—D—(E> (L’))

If the motion of the storm is represented by the vector ¢
with components ¢, and ¢, in the cast and north directions,
respectively, and if we assume steady state conditions,

K= 55 [V ) Vo—0(V—c)-Vu]

=%{u[(u—cx)] g—fc-k (v—e¢,) g—z

—v [(u—c» St (o) %ﬂ} (16)

Figures 6, 7, and 8 represent fields of the quantity 2K,
V=2 V/R, corresponding to the wind fields of figures 3,
4, and 5, respectively. Regions where this quantity is
negative and numerically greater than the Coriolis pa-
rameter, i.e., areas where the winds are anomalous, are
shaded. The consistency of the patterns of these areas
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1958.

from day to day attests to their authenticity and demon-
strates beyond any reasonable doubt that anomalous
winds do occur. It will be noted, however, that the
arcas covered by these winds represent narrow strips of
the order of 1 to 2 degrees of latitude in width, and are,
therefore, likely to escape detection by ordinary synoptic
analvsis. In addition, the vertical extent of these winds
is also limited, as can be noted from the fact that they
are not found in figure 9 which represents the field of
2V/R, a few thousand feet below that of figure 6. This
is perhaps the reason why meteorologists in general have
failed to realize both the reality and importance of these
winds. The latter stems from the fact that they repre-
sent an important mechanism for the development of
atmospheric instability as we shall now proceed to show.

4. THE CONCEPT OF INSTABILITY OF
ATMOSPHERIC MOTION

The concept of instability in the atmosphere appeared
with the initial developments in the theory of atmos-
pheric disturbances. As early as 1878, Rayleigh [13]
investigated conditions under which small displacements
at the boundary between two air streams grow into larger
disturbances. At about the same time, Helmholtz [8]
found that, under certain conditions, unstable gravity
waves developed at the interface between two liquids of
different density and velocity. The above studies culmi-
nated in the polar front theory of cyelone formation,
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Paralleling the above studies, another series of investi-
gations, beginning with those of Helmholtz [9] and Ray-
leigh [14] attempted to link instability in air currents with
the quasi-horizontal distribution of the kinematic proper-
ties of the currents. This type of instability is usually
known as dynamic instability.

In recent years, attention has been redirected to still
another type of instability known as baroclinic instability.
This type of instability, the importance of which was first
pointed out by Margules {12], occurs by virtue of the
vertical wind shear.

There is little doubt that the above three types of
instability all play an important role in the atmosphere
and there is an obvious need for a unified theory which
combines them and brings out their relative importance
and their interrelations. In the absence of such a theory,
we must consider the particular type of instability which
appears to have the most direct bearing on the problem
at hand. In the present case, the importance of anoma-
lous winds is best demonstrated by studying the circum-
stances attending the development of the so-called
dynamic instability, with especial reference to atmospheric
currents in curved motion.

5. DYNAMIC INSTABILITY IN CURVED AIRFLOW

In 1936, Solberg [16] investigated the conditions under
which dynamic instability occurs in a steady symmetrical
polar vortex which is initially in gradient equilibrium.
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Solberg’s approach may be extended to any steady vortex
in which the tangential variations of the wind are negli-
gible in comparison with those in the radial direction.

Liet us then consider such a vortex in which the angular
speed w is a function of the distance R from the axis of
rotation., We shall proceed by the standard method and
impose a small perturbation on this steady vortex and find
out the circumstances under which the frequency of the
total perturbed motion becomes imaginary.

If we disregard friction, we can express the equilibrium
of forces acting on the steady vortex by the following
equation,

2
PR 22V R g9t g—0

(17)
where V is the magnitude of the speed, @ the earth’s rota-
tion, @ the potential temperature, g the gravity vector, and
z=c, (p/1,000) /.

Let us now apply a uniform radial impluse to all the
particles at distance 72’ from the axis so that at the time
t=t the particles form another circle with radius 2. We
stipulate that at any instant, the perturbed particles
immediately acquire a pressure equal to that of the points
which they are occupying at that instant. We further
assume that the perturbed particles, in their displacement
over a small distance S from their equilibrium position
conserve both their potential temperature 6’ and their
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absolute angular momentum M,=V’'R-+QR’?so0 that
6—6’'=S§ - Vo
and (18)
M,—M.=S.VM,
In addition to the forces indicated in equation (17), the
perturbed particles sustain an acceleration d?5/dt* so that
their motion is determined by the equation

d2b V72
th r?

ZQV’

R+ R—0'Va+g=0 (19)

From equations (17) and (19), we obtain by subtraction
LQS_VZ— V2
d#? R?
Now

232 (V—V") R+ (3—0)Vx=0 (20)

VE—V"=(V-V").2V—(sV)? (21)
where 6 V=V —V" is a perturbation quantity, the square

of which may be neglected. Equation (20) thus becomes

d’S

W_[Rz- (02 (V— V’)] RE(—0)Vr=0  (22)

We now express the above equation in terms of the con-

servative quantity A4, and make use of the relations in-

(18); we obtain

dtz [R2 (0t 2)(3- vzua)+R (w2+3w9+292)5R]R
+(3-VO)Vr=0 (23)

If the perturbation is very small compared to the
dimensions of the vortex, i.e., if (R-R')/R=1071, the term
in 8R in the above equation may be neglected and we
finally have

o
:i%_{% (w+ ) S - VMa)] R+(S - V6)Vr=0 (24)

Let us assume that the displacement S is proportional
to a function of the form e™* and project equation (24)
along two orthogonal directions: one corresponding to the
vertical and the other to a radial direction. I the com-
ponents of S along these directions are given by z and 7,
respectively, the projections of equation (24) along these
directions are:

2wg, aJ[ oM, m( 0 00
Ve o T >+a 5, )=0
and (25)
. 2ew( OM, | DM\ Om( 00 00\
TR o >+br +402>4

where w, denotes the absolute rotation (w+Q).
For nontrivial values of » and 2, the determinant of the
above system of linear equations vanishes and we obtain
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pity? [(Dr od  Om g) 2w,, oM, 2wa, oM, >:|
oz b? or or R or
20, a7r 2wa, or\ /oM, af) aLM of
(h’ TR a;)(m FYa ) 0 (26)

Examining the order of magnitude of the various terms in
equation (26), we find that

Or Of

or 08 3
2z 02"

‘-¥:V . =~ -1
S or T Vo=10

2 (o, 00
R Waz or ar

( + )(62\1 08 0OM, b@)
R\ 3:T% 5, dz or Oor 0z

= (2w, - V) (V6-VXV,) ~107"

%%>=—2w-v><vaz10‘8
© T 1))

Solving for »* and neglecting the last two terms of (27)
in comparison with the first, we have

y 2= —Vr.V0 (28)
The value of this root is determined mainly by the static
stability

om0 g b

T2z0z 60z

oz 0z (29)

The second root »,? i1s obtained by dividing the third
term of (27) by »%  Thus,

< i > <6Ma 20 dM, gg>
o B Y oz T 3 J\ 0z or  or oz

: or 35 on O
0z 0z  Or Or

(30)

The above equation will be greatly simplified if it is
projected on an isentropic surface so that 06/0r vanishes.
In addition, since the angle between isobaric and isentropic
surfaces is generally small, (Ox/0r) =0 and

V22:[2waz(v>< V) z]ﬂ (31)

Equation (31) is identical with Solberg’s results for the
polar vortex and states that the square of the frequency
of the second root is equal to twice the product of the
absolute rotation of the vortex and the vertical component
of the absolute vorticity, as measured on an isentropic
surface. I we now use a relative frame of reference fixed
with respect to the earth, we have

=] () s en ],

Since we are considering a steady vortex, the streamlines
coincide with the trajectory and B=~R, The frequency
vy becomes 1maginary and the motion unstable when

[(5+) (s‘+f>] <0

(32)

(33)
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Ficure 10.—Vertical cross-section of temperature anomalies from the mean August atmosphere in a direction perpendicular to that of the
motion of hurricane Daisy, August 25, 1958. Pressures shown at the right edge indicate the levels at which data were

available (analysis by J. A. Colén).

In other words, dynamic instability occurs with normal
winds provided the absolute vorticity, as measured on an
isentropic surface, is negative. Alternatively, instability
occurs with positive absolute vorticity provided the wind,
as measured on an isentropic surface, is anomalous.

The above criterion is identical with that obtained by
van Mieghem [17]. The latter, however, did not en-
visage the possibility of the occurrence of anomalous
winds and, therefore, equated the condition for the release
of dynamic instability with the occurrence of negative
absolute vorticity.

It should be noted that, according to the theory of
equations, the second root may be obtained by subtracting
»! from the negative value of the coefficient of »? in equa-
tion (26). If we then neglect the vertical wind shear
(0M,[0z=0), we have

=Gt ) ) (34)
which is similar to equation (32) except that the quantities
are now measured on a level surface. Equation (34) is
identical with the criterion for dynamic instability ob-
tained by Sawyer [15].

Physically, the operation of the above criterion may be
visualized by studying the balance of forces on an anti-
cyclonic vortex which is initially in gradient balance.
Let a particle be given an impulse toward lower pressure.

If the flow is unstable, the particle tends to continue in
the direction of the impulse. There are two cases to
consider:

Case I: Instability with Normal Winds—If the winds are
normal, there is instability if the pressure gradient along
the path of the particle increases at such a rate that the
speed of the particle remains subgradient. This would
require a rapid outward increase in anticyclonic rotation
or a rapid decrease in cyclonic rotation expressed by the
inequality

[ wr) | < (35)
[{ br 9
Case 11: Instability with Anomalous Winds.—From figures
1 and 2, it is scen that if the wind regime is anomalous,
the speed increases with decreasing pressure gradient and
trajectory curvature. Therefore, if the trajectory curva-
ture of the particle remains constant, the pressure gradient
along the trajectory should decrease at a {ast rate; other-
wise, the speed of the perturbed particle will eventually
reach a speed greater than that appropriate for gradient
equilibrium and its acceleration will be checked. Actually,
however, the trajectory curvature decreases as the particle
moves toward lower pressure. Therefore, instability can
occur with a slower rate of pressure gradient decrease or,
if the curvature decreases rapidly, instability can occur
even with a slow outward increase of the pressure gradient.
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Ficure 11.—Vertical cross-section of deviations of the altitudes of pressure surfaces from the mean August atmosphere (“D’’ values) in
a direction perpendicular to that of hurricane Daisy, August 25, 1958 (analysis by J. A. Colé6n).

Equation (33) states that the motion is unstable so long
as the combined effect of the change of wind speed curva-
ture is such that

6. A MECHANISM FOR THE DEVELOPMENT
OF ANOMALOUS WINDS

An insight into the manner in which anomalous winds
develop may be gained by counsidering the circulation
theorem of Bjerknes which may be written [11]:

4C,_dC 0 d5)
at —dt 2% (37)
:Nal—-p
Oa=§ V,* sr=absolute circulation around a closed
Q

curve @.
O:Eﬁ V . Sr=relative circulation around the same curve.
Q

> =the equatorial projection of the area within the
curve ().

N.,-,=the number of pressure-volume solenoids enclosed
by the curve @.

A comparison of figures 6, 10, and 11 indicates that there
are few solenoids at the level and location where the
anomalous winds occur. We may, therefore, set

dC >
22 S e=—0 (38)
or
C+20> =constant (39)

If we approximate the hurricane to a simple circular
vortex, the circulation at a distance R from the center is

O=2zR% (40)
and
> =nR%sin ¢ (41)
where ¢ is the latitude.
Substituting the above values of ¢/ and = in (39), we
obtain
R*(w+Q,) =constant 42)
whence it can be seen that, in a circular vortex, disregard-
ing the solenoid term in equation (37) is equivalent to
assuming conservation of absolute momentum—a concept
which is known to be applicable to upper-level hurricane
circulation.
According to equation (42), if the vortex has horizontal
convergence, the circles contract and w increases. If, on
the other hand, the circles expand as a result of horizontal
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divergence, w decreases. In this case, in order that o
should decrease sufficiently so that

w+Q,—0

i.C., (43)

2V
5 0

R must approach infinity. Since the expansion cannot
proceed so far, we conclude that the anomalous winds in
figures 4, 5, and 6 were not produced by a symmetrical
horizontal divergence of the air particles which arrived
at these higher levels by ascent in the core ol the storm.
Another mechanism must be sought to account for their
occurrence.

From figure 1 it is clear that a change of regimme from
normal to anomalous winds would be more difficult to
accomplish if the pressure gradient force is much lower
than the maximum value f?/4K’, since this would re-
quire a big jump in the wind speed. If, however, the
pressure gradient is nearly equal to the maximum, a
comparatively small impulse would be sufficient to shift
an air particle from the lower to the upper branch of the
V curve of figure 1.

Let us visualize initial conditions characterized by an

anticyclonic air stream in gradient equilibrium. In
figure 12, let A be the equilibrium position of a particle
in this stream. Now let us visualize that the equilib-
rium is disturbed by an increase in the pressure gradient
brought about, for instance, by an interaction between
tropical and extratropical pressure systems. Two cases
may be discussed: Case A.—The increase of the pressure
gradient force is from P to Py, i.c., the resulting pressure
gradient force is well below the maximum f?/4K;. The
wind, having become subgradient, the particle turns
toward lower pressure and accelerates. Having reached
the equilibrium speed B, unless there is considerable
damping, the particle may slightly overshoot this posi-
tion to B;. Tt then oscillates with decreasing amplitude
about the equilibrium position until balance is finally
reached at B.
Case B—The increase of the pressure gradient force is
from P to Ps; i.e., the increased pressure gradient force
is nearly equal to the maximum value f?/4K;. In this
case, the speed of the accelerating particle, by over-
shooting the equilibrium position, may reach the value B;
which is in excess of the critical speed f/2K,. Whereas
at B, the speed of the particle is supergradient, and at
B, it is subgradient for the same pressure gradient. Thus,
by overshooting the critical speed, the particle is hence-
forth constrained to move toward lower pressure and
sustain further acceleration unless the distribution of
the wind field along its path 1s such that the absolute
vorticity is negative; in this case the motion will be
stabilized in accordance with equation (33).
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Figure 12.—TIllustrating the development of anomalous winds
(see text).

7. EXAMPLES OF SITUATIONS IN WHICH
ANOMALOUS WINDS PLAY A ROLE

In a previous paper [1], the author suggested from
theoretical considerations that the occurrence ol anoma-
lous winds in the manner described above provides a
mechanism for triggering hurricane development. De-
tails concerning how this is brought about and some
observational evidence to this effect are given in a sepa-
rate paper [2] and are beyond the scope of the present
study. Here we would suggest that, in view of their essen-
tially unstable nature, anomalous winds must play an im-
portant role not only in hurricane formation but also in
other types of atmospheric development, especially those
which occur downstream from a pressure ridge which
has undergone marked intensification, or those accompany-
ing the superposition of strong westerly winds on the
crests of the long waves.

A case in point is that discussed by Bjerknes [4] linking
the deepening of a wave trough with a strong intensifica-
tion of the ridge upstream from it. Specifically, Bjerknes
suggests that if the ridge intensifies so that the curvature
of the contours exceeds a critical value

£

45,4V,

(44)

where V, denotes the geostrophic wind, the air particles
cannot follow the contours and must perforce flow to-
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Freure 13.—Illustrating the eyclogenetic effect of anomalous winds.
The dashed curve represents the probable trajectory of an air
particle after its speed changes to the anomalous regime at the
point A,

ward lower pressure and accelerate. The acceleration
results in supergradient winds which then curve back to
higher pressure, the net result being a deepening of the
trough downstream from the ridge.

Now that the likelihood of the occurrence of anomalous
winds in situations analogous to that described above has
been demonstrated, the deepening of the trough may be
looked at in a new light. Il.et us suppose that the wind
becomes anomalous as a result of the strengthening of
the pressure gradient to a value near the maximum pos-
sible for anticyclonic flow, and let us follow the trajectory
of a particle situated at the point A in figure 13, where the
wind changes regime and becomes subgradient in the
manner discussed in the previous section. As a result,
the air particle moves to lower pressure and accelerates.
In doing so, its curvature decreases, as can be scen from
the figure. Unless the pressure gradient along the tra-
jectory increases rapidly, the progressively decreasing
curvature requires an increasingly stronger speed for
balanced motion (see fig. 2) and the particle, therefore,
continues to accelerate. However, if the curvature
vanishes so that the particle follows a straight trajectory,
the wind instantly becomes supergradient and the particle
must curve back to higher pressure. In the mean, the
particle must, therefore, follow a slightly anticyclonic
trajectory and is constrained by the geometry of the
pressure distribution to curve back to higher pressure,
as shown by the dashed curve in figure 13.

In this connection it is of interest to mention that
Angell [3] has noted that anomalous flow toward higher
pressure can occur continuously for several hours. Thus,
by stipulating the occurrence of anomalous winds, we
arrive at the same ultimate deepening envisaged by
Bjerknes.
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8. CONCLUSION

Although the observational evidence presented here
is for the occurrence of anomalous winds over small regions
of the atmosphere, it is significant to note:

A. that their occurrence may be dependent on large-
scale processes, such as those involving the intensification
of pressure ridges or the latitudinal shift of the westerlies;
and

B. that their effect extends beyond the area where they
oceur.

The fact that these winds can occur only in anticyclonic
motion again demonstrates the vital regulatory role of
the high pressure regions in determining the state and
motion of the atmosphere.
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